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AERONAUTIC SYMBOLS
1. FUNDAMENTAL AND DERIVED UNITS

Metric English
Symbol
. . Abbrevia- : Abbrevia-
Unit tion Unit tion

Length_ ... I |meter....eoeeeeocooana- m foot (or mile) . ... £t (or mi)’
Time.ccoeun- ¢ second . . o _..__.__. 8 second (or hour)._...__ sac (or hr)
Force. ceewa- F weight of 1 kilogram__.__ kg weight of 1 pound_.__. b .
Power.oo_... P ‘horsepower (ﬁletric) ............... horsepo;:er ___________ hp
g v {kilometers per hour._.._. kph miles per hour. . __..___ mph

peed. ... meters per second.. ... mps feet per second.._.____ fps

Welght-mg
or 32,1740 ft/sec’ .

Mass———-

Moment of inertia=mk?.
radius of gyration ¥ by proper
Coeflicient of viscosity

Area 4
Area of wing
Gap

Span

‘Chord

Aspect ratio, g
True air speed

Dynamic pressure, %pV’

Lift, absolute coefficient Cp=

Drag, absolute coefficient O’D=q§

2. GENERAL SYMBOLS

- Standard acceleratlon of gramty—Q 80665 m/s’

(Indlcate axis of

subscnpt )

'—.
o

Kinematic v1scoeuty :
Density (mass per unit volume)

Standard density of dry air, 0.12497 kg-m~-s* 2t 15° C

and

760 mm; or 0.002378 1b ft,"‘ sec?

Specific wei ht of “standa.rd” air, 1 2255 kg/m? or
0.07651 1b/cu £t

8. AERODYNAMIC SYMBOLS

W
"

Q
0

R

S .

Profile drag, absolute coeﬂiclent C’Do gg

Induced drag, absolute coeﬁcmnb

Parasite drag, absolute coefficient

D,
OD ——Q‘S .

D
Oor =48

Cross-wind force, absolute coefficient CG--,—-q%,

@y
ay

g

Angle of setting of wings (relatwe

to thrust line)

Angle of stablhzer setting (relauve to thrust

Tine)

‘Resultant moment

Resultant angular velocity

oy

Reynolds number, p% where ! is & linear dimen-

sion (e.g
standard pressure at 15° C, the

., for an airfoil of 1.0 ft chord, 100 mph,

corresponding

Reynolds number is 935,400; or for an airfoil
of 1.0 m chord, 100 mps, the corresponding

Reynolds number is 6, 865 000)
Angle of attack
Angle of downwash

Angle of attack, infinite aspect ratlo

Anglu of attack, induced

Angle of attack absolute (measured from zero-

lift position)
Flight-path angle




. NACA-Langley - 10-11-49 - 1500

ERRATA

NACA REPORT 869

ISOLATED AND CASCADE AIRFOILS WITH PRESCRIBED
VELOCITY DISTRIBUTION

By Arthur W. Goldstein and Meyer Jerison

Page 13, Column 1l: The left-hand side of equation (B7) should be
w'(z) instead of (z)




REPORT No. 869

ISOLATED AND CASCADE AIRFOILS WITH PRESCRIBED
VELOCITY DISTRIBUTION

By ARTHUR W. GOLDSTEIN and MEYER JERISON

Flight Propuision Research Laboratory
Cleveland, Ohio

Accesion For

NTIS CRA&I

DTIC TAB
Unannounced
Justification o

- Doal_

By
Distribution |

Availability Codes

Avail and/or
Dist Special

A-)




National Advisory Committee for Aeronautics
Headquarters, 1724 F Street NW, Washington 25, D. C.

Created by act of Congress approved March 3, 1915, for the supervision and direction of the scientific study
of the problems of flight (I". 5. Code, title 49, sce. 241). Its membership was increased to 15 by act approved
March 2, 1929. The members are appointed by the President, and serve as such without compensation.

Jerome C. HunsakEir, Sc. D)., Cambridge, Mass., Chairman

ALEXANDER WETMORE, Sc. D., Secretary, Smithsonian Institution, Vice Chairman

Hon. Joun R. AL1soN, Assistant Seeretary of Commerce.

VanNNEVAR Buss, Sc. D., Chairman, Research and Development
Board, Department of National Defense.

Epwarp U. Conpox, Pu. D., Dircetor, National Bureau of
Standards.

DonaLp B. Duxcay, Vice Admiral, Deputy Chief of Naval
Operations (Air).

R. M. Hazen, B. S, Chief Engineer, Allison Division, General
Motors Corp.

WriLLiam LirrLewoop, M. E., Vice President, Engineering,

Epwarp M. Powers, Major General, United States Air Force,
Deputy Chief of Staff, Matéricl.

ARTHUR K. Ravsonp, M. 8., Vice President, Ingineering,
Douglas Aircraft Co.

Francits W. ReicHeuperfFeR, Sc. D., Chief, United States
Weather Bureau.

CarL Spraatz, General, Chief of Staff, United States Air Force.

OrviLLE WRiaHT, Sc. D., Dayton, Ohio.

Tugovort P, Wricur, Sc. D., Administrator of Civil Aero-
nautics, Department of Comumerce.

American Airlines Svstem.

Turoport C. LoNNQUEsT, Rear Admiral, Assistant Chief for
Research and Development, Bureau of Aeronautics, Navy
Department,

Huaeu L. Drypex, Pu. D., Director of Aeronautical Research Joux F. Vicrory, LLM., Erecutive Secrelary

Joun W. Crowuniy, Jr., B. 8., Associate Director of Aeronautical Research E. H. CuamBeruiN, Erecutive OQfficer

Henny J. E. REp, Sc. D., Director, Langley Memorial Aeronautical Laboratory, Langley Field, Va.
Syura J. DeEFrance, B. S., Director Ames Aeronautical Laboratory, Moffett Field, Calif.

Epwarp R. Suare, LL. B., Director, Flight Propulsion Research Laboratory, Cleveland Airport, Cleveland, Ohio

TECHNICAL COMMITTEES

OPERATING PROBLEMS
SELF-PROPELLED GUIDED MissILES
INpusTRY CONSULTING

AERODYNAMICS
Power PLANTs FOR AIRCRAFT
AIRCRAFT CONSTRUCTION

Coordination of Research Needs of Military and Civil Aviation
Preparation of Research Programs
Allocation of Problems
Prevention of Duplication

Constderation of [nrentions

AMES AERONAUTICAL LABORATORY,
Moffett Field, Calif.

LANGLEY MEMORIAL AERONAUTICAL LABORATORY,
Langley Field, Va.
FuLiguT ProruLsioN RESEARCH [LABORATORY,
Cleveland Airport, Cleveland, Ohio

Conducl, under unified control, for all agencies, of sctentific research on the fundamental problems of flight

OFFICE OF AERONAUTICAL INTELLIGENCE,
~ Washington, D. C.
Collection, classtfication, compilation, and dissemination of scientific and technical information on aeronautics

II




REPORT No. 869

ISOLATED AND CASCADE AIRFOILS WITH PRESCRIBED VELOCITY DISTRIBUTION

By ArtHUur W. GoLpsTEIN and MEYER JERIsON

SUMMARY

AAn eract solution of the problem of designing an airfoil with
a prescribed velocity distribution on the suction surface in a
given uniform flow of an incompressible perfect fluid is obtained
by replacing the boundary of the airfoil by vortices. By this
device, a method of solution is developed that is applicable both
to isolated airfoils and to airfoils in cascade. The conformal
transformation of the designed airfoil into a circle can then be
obtained and the velocity distribution at any angle of attack

computed. Numerical illustrations of the method are given for
the airfoil in caseade. /2 = L L == P

INTRODUCTION

The problem of increasing the output per’stage in axial-
flow compressors and turbines involves the use of high-
solidity (closely spaced blades) stages of highly cambered
blades. In addition, the velocity distribution must be care-
fully sclected as a function of are length along the airfoil
(blade section) boundary in order to avoid flow separation or
excessively high local velocities.

Several methods are available for obtaining an airfoil with
a preseribed veloeity distribution. The methods that lead to
theoretically exact results are based on conformal-mapping
theory. (See references 1 and 2.) In reference 3, Mutterperl
extends the method of conformal mapping to solve the
problem of computing a cascade of airfoils with preseribed
velocity distribution but, for cascades with closely spaced or
highly cambered airfoils, this procedure becomes very cum-
bersome. Approximate solutions have been obtained by
placing singularities such as vortices, sources, and sinks in a
uniform stream. The shape of sections of airfoils in cascade
can also be computed by distributing such singularities
periodically throughout the region of the cascade. as deseribed
by Ackeret (reference 4).

Beeause these vortex methods are not exact, a method
with the vortices on the boundaries of the cascade airfoils
was developed.  This method gives a theoretically exact solu-
tion without the computation difficulties e¢ncountered in
conformal-mapping methods for highly cambered airfoils or
closely spaced cascades. FFurthermore, for the same accuracy
in computing the airfoil shape, this vortex method requires
the computation of fewer points than the method of conformal
mapping because these points may be arbitrarily placed on
the airfoil. The method may be applied to isolated airfoils
and to airfoils in cascade. For the cascade, the inflow and
discharge velocities and a veloeity distribution on the surface

S2U313—49

of an airfoil are given and the shape of the airfoil is deter-
mined. In some cases, the spacing of the blades is pre-
assighed, which places a condition on the assumed velocity
distribution. Once the airfoil shape has been evolved, the
velocity distribution may be computed for any angle of
attack by the method described in appendix A. The method
of this paper was developed at the NACA Cleveland labora-
tory during 1946.
THEORY
OUTLINE OF METHOD

In reference 5, it is demonstrated that the two-dimensional
potential flow about a body in a uniform stream can be
represented by substituting for the body a sheet of vortices
along its boundary. The vortex strength per arc length at
any point is equal to the magnitude of the velocity at that
point. A proof of this relation for the case of the cascade is
given in appendix B. The problem of finding a shape with
a prescribed velocity distribution when placed in a stream
can then be stated: Given a vortex distribution, to find a
contour which satisfies the condition that it will be a stream-
line in the flow field induced by the uniform flow and the
vortices distributed on the contour.

The procedure of finding the shape begins by choosing an
approximate shape and distributing the vortices on it. The
stream function of the flow induced by the vortices and the
uniform stream is computed at points on the boundary of
the assumed shape. If this stream function is constant, the
assumed shape is correct. Variations of the stream function
are a, mecasure of the deviation of the assumed shape from
the correct one. These variations are used to distort the
original shape into a new shape whose stream function is
more nearly constant. The process is repeated until the
variations become negligible.  In the process of shape adjust-
ment, the velocity is altered on the pressure surface.

DERIVATION OF EQUATIONS FOR THE STREAM FUNCTION

Isolated airfoil.—The complex or reflected velocity
w’(z) (which is the derivative of the complex potential func-
tion w(z)) induced at the point z=xr<+iy by a vortex of
strength £ located at z,=x,4 1y, is

(A summary of the principal symbols used in this report is
given in appendix C.)




2 REPORT NO. 869—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

The complex velocity w/(2) induced by a uniform stream
with complex velocity w0, and a distribution of wvortex
strength per unit length v(z2,) along 2 curve with coordinates

Zo I8
1 v(z,) ds
() = AT
w' (z)=mw, +2ﬂ.. - (n
where dx, is the element of are length along the carve. The
complex potential at the point 2 is the integral of w/(2) with
respect to 2, namely

w(z)=zw, 4+ ] I.Iy(zu) log (z—z,) ds, (2)

2
From reference 1 (notation modified),
v(zo) dse=w (2,) dze=dw(z,) =dp(z,)+1 dy(z,)

where
¢ velocity potential, Rw(z))
Y stream function, Ifw(z)]

When equation (2) is applied to obtain the complex
potential function at any point z in the flow field, the in-
tegration must be carried out along the boundary of the
body. Because this curve is a streamline, d¢=0 and, there-
fore, cquation (2) becomes

L[ .
w(:)=swu'+§;;J log (z—z,) de(z,) (2a)

The imaginary part of cquation (2a) is the stream function
at the point z,

V==V Vim e [ log \GEERIFG=T dez) )

where
V, y-component of uniform stream veloeity 77
1, r-component of uniform stream velocity V

It is convenient to use the arc length along the airfoil as
a parameter. If (r.y) is a point on the airfoil boundary, then
¢ will denote the are length there; similarly, s, will denote
the are length at (s, %,). The vortex at «, on the airfoil

influences the stream function at the point x on the a
The stream function induced at (r.y) by a vortex of
strength at (r,. y,) 1

R 1 , N v
iz )= og (o= ) = (g —1.)°]

A plot in the (o) plane of curves for a constant f,
consists of concentric circles with center at (a2, ¥,).
The velocity at the point s, on the airfoil is the direet
derivative ¢’(x,) of the potential along the strean
If the velocity along the airfoil has been speeified an
airfoil shape has been assumed. the resultant stream
tion along the boundary of the airfoil can be approxin
by using the approximate shape in evaluating the integ:

*
¢M=mm~ﬁﬁwmwmw%

where

Y (8)stream functionat(r,y) due to uniform stream, —o17,-
{  total arc length of airfoil

All variables are expressed in terms of the are-length
meters s and s, The integral in equation (5) can be ¢
ated either numerically or graphically over the entive
of integratiomr except in the region where ¢ (=s—s,) is =
for in this region fi(s,s,) becomes infinite. This portic
the integral can be evaluated by approximating the a
boundary by a line segment.  Then,

.fl (S, .5‘0) =~ _*}1;_ 10g (8—80)2

The preseribed veloeity can be given in this region. w
may be defined by s—aeSs,£s+4a, by a Taylor’s seri
a funection of s, about the point s, :

o' (s)=¢ () F 0" () (5,— )+ & .2!(8) ($o—5)24 ...

where the primes indicate derivatives with respect
The integral is then

s+a *sta | . .
f Fi1(s,50) 0" (84) (1-\'u=J 4 log (s,—%)? [ (s)+ " () ix,— )+ -] dy,

N o

3,007
=;1r~[a<p’(~) (log (z—l)—{—q—‘%!—(') (log n—%)%—- : —]

In most cases. only the first term need be used in equation (6).  The same type of approximation can be used to eval
a portion of the integral if the opposite side of the airfoil comes in the neighborhood of the point ().
A more general equation applicable to a segment that does not pass through s is:
2 { <

1 (e g 21 N, .—IAS', o (h? 2 o (h2py —ip— b -
41er+b log [(x—x,)>+ (y—y)% e’ (s6) (l(.so)—41r K (p) [c log (h*4-¢*) —b log (A*+b")—2ic—b) 42k tan~ Wb

h(c—b)]+

(p——2(”p) [(B*4¢®) log (h*+et)— 2+ log (308 — (?—b%))+

111 92
w—'{sp’) [03 log (*+¢*) =8 log (h*+b)—% =)+

2h*(c—b) —2h* tan™! lz.(c:{))]+. - :

h*Lbe
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where £is the perpendicular distance {rom & to the segment,
so=p locates the foot of the segment, (p+d and (p-+e)
are the limits of the integration of .. and approximately,

. . 7 . I/J 11y B
(P =g (prb—bg (1;7»[)1-%,));; (p=0)

= (=t =be" (p—1)
‘;///(1 — ”,(1)“"[“

[Squation (6a) may be used when the line segment is not
of equal lengths on either side of the perpendicular foot or
when ¢'(s) or its derivatives are discontinuous at either
(p+06) or (p+e). If a=c=—h and h=0, equation (6a)
reduces to equation (6).  The size of «, 6, or ¢ is deter-
mined by the requirements that the segment in question
be nearly straight (the approximation is of the second degree)
and that ¢’(s,) be accurately represented by a Taylor's
series expansion of few terms,

1

Ve

n— V —
V.r 2
"__,.
Ve '
Vi1 Vz \4 Vi
A

Exit-velocity diogram  Complete-velocity diagrom

vy
ZAAN

Entronce -veloeity aiagrom w2 wm'
Reflected-velocity d/agram

Fi1GURE 1.—Notation for cascade flow,

Airfoils in cascade.—The expression for the complex po-
tential for the flow about a cascade of airfoils is derived in
appendix B, The notation is defined in figure 1. The
equation that corresponds to cquation (2a) for isolated air-
foils is for a cascade of airfoils

L1 e
w(z) =W +;_,—~7;i flogl:smg(:—:,,)] deo(z,) 0
where )

w,” mean stream velocity, which is one-half the sum of
complex (reflected) velocities upstream and down-
stream of cascade. 17,—-iV,

§  distance between successive airfoils in cascade

The mean veloeity w,” corresponds to the uniform velocity

w,” of the isolated airfoil flow. )

The term zw,” is the complex potential function resulting
from the mean flow. In the integral, the element de indi-

cates the vortex-element strength and log [sin (#/S) (z-2,)]
represents the complex potential at the point z caused by an
infinite row of unit vortices at z,=n8 where n=0, I,
2, .. .. The imaginary part of equation (7) is the stream
funetion.

o=

*,=1
) = () — ] i) dolx) (8)

o Re=

where

_/'._,(.\‘,.\'0):417‘; log [bm* b (

is expressed in are-length parameters and @, (s) is the stream
funetion at (ry) induced by 2 mean stream whose complex
veloeity is w,”; that is,

\//m =—J Vvy + Yy Vz

7 +smh‘b (y I/,,)]

The values of (e-r,)/S and (y-y,)/S for various values of £,
are given in table L. A plot of x-r, and y-y, for canstant
values of f,(z,z,) is shown in figure 2. These curves may be

So(x- X5, Y-yo) (Y-Yo)
03

(x-2;)

3

TFIGURE 2.—Plot of curves for constant fa{r—=re, y~yo).

interpreted as the streamlines of the flow induced by an
infinite row of vortices of unit strength located at the points
(ro£nS, ¥,), where =0, 1, 2, . . .. In the region of a
vortex, the streamlines are nearly circles; that is, the flow is
nearly that induced by an isolated vortex. At a distance
from the vortex row, the streamlines are parallel lines, as in
the flow pattern induced by a continuous uniform distribu-
tion of vorticity along a straight line instead of a row of
diserete vortices.  The velocities on the two sides of such a
vortex line are of equal magnitude but opposite in direction.
This behavior of f; for large |y—y,|/S and also for small
(Y—yo)*+ (r—ur,)*
o o)
(£—r,)/S and (y~v,)/S are small,

flaz) = log Tl + =y (O)

can be described as follows: When both

which differs from f(z, z,) only by a constant. For large
values of |y—y,i/S, irrespective of (x—ux,)/S and a constant
term

Yol

Sz, 20) “‘*‘33‘ (10)

which is the stream function of a uniform stream parallel
to the r-axis.
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Equation (8 can be used for computing the stream function along the boundary of an airfoil in cascade j
cquation (5) 1s used for the isolated airfoil. The integral over the range in the neighborhood of the point s is obtai
using equation (9 for fo (s,8,).  The result, derived in the same manner as equation (8), is

o sl s dsim s o ()1 e 5 Do (Fa)~g ]

§—a

The more general equation (6a) is modified for cascades by
multiplying the argument of all logarithms by the factor
/S°.

ADJUSTMENT OF SHAPE

If the stream function for the assumed airfoil has been
computed and has been found to vary, the shape must then
be adjusted to give a more nearly constant stream function,
The shape changes are made by rotation of the body plus
displacement of the individual points normal to the mean
stream. The rotation is used to place the front stagnation
point properly.

Rotation of the airfoil.—In the formula for computing the
stream function of an isolated airfoil, the contribution of a
vortex clement at (25, ¥,) to the stream function of a point at
(r, ) is dependent merely on the distance between the two
points. Consequently, if the entire airfoil is rotated, the
effect of the boundary vortices on the stream function at any
point on the airfoil boundary will not change. The effect of
the blade rotation on the stream function along the boundary
is therefore determined by the change in relative position of
the points in the uniform strecam. The first adjustment in
shape is a rigid rotation of the airfoil in order to obtain a
more nearly constant stream function along its boundary.

If the airfoil is rotated through an angle B8, the stream
function is so changed that ¢ () is a function of 8 and s and

may be written ¢ (s, 8).  When g=0. ¢ (v, 0) is the o
stream function before rotation. After rotation th
stream function ¢ (s, 8) may be expanded in a Taylor’s
about the point =0,

V(s,8) = so)w[b‘“”ﬁl + .

Only the first two terms in this series will be used bee.
is assumed to be small.  The angle 8 is to be determin
the minimum mean-square deviation of the stream fu
from its mean value. Because the object of the rota:
essentially to adjust the shape of the nose, the rotation
also be made to reduce the root-mean-square deviation
stream function to a minimum for a portion of the
including the nose.

The mean value of the stream function at any angi

-

¥o =1 v ds=1 [ {0+ [Seem] te

The difference between the new stream function ¢ (s,
its mean value ¥ (B) is squared and integrated to ob:
measure of the variation of § (s, 8) from the mean va
the new angle. The condition for obtaining a min
root-mean-square deviation by adjusting 8 is

O=(_EZJ;‘ [np(s,ﬂ)—‘;(ﬂ)] (ls—~—.-f I:\b(s 0)+8 d\(/((lzo) E(ﬂ)]eds
= [/ o 00 Y03 |[ 250 e Jas

o [ d¥(s,0) tl\l/(vo - ;
=2 [ ROy +5 ¥ i) |ds—

5 B [

2 [ [weo+s

The sccond integral vanishes by virtue of equation (11),
which may also be used to eliminate ¥ (8) from the remaining
term. The solution for 8 is

[0 [ a L [ 520
e

In order to apply equation (14), dy/d8 must be known at
points along the boundary of the airfoil. For the isolated
airfoil, the contribution of the vortices is unaffected by the
rotation and therefore

dy

dy__dy, _ . - =

= =g VeV == AR A
If the airfoil is rotated about the point (x., y.), equation (15)
becomes

(lx,{/(s 0)

B)] ds

ggzcow[u 2 Vet (y=y) V] +

sin 8 [(‘E_"'c) I'y_(y_yc ’.r]
where (x,y) are the coordinates of the point before rot:
For small values of 8, equation (16) reduces to

{
(—‘l‘/-(l’_ :)‘ z+(y ./4:)t

The choice of (z,, y.) will have no effect on the results it
case.

When the airfoil in cascade is rotated, the change i
position of the vortices of the adjacent blade must be
sidered. For the isolated airfoil, it was unneccessary to
sider the change in position of the vortices becaus
influence of a vortex (equations (3), (4), and (3)) depe
on the function f;, which is constant on circles.  The infli
of the vortices on the airfoil is therefore independe
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direction.  Because the f; contours are not eirveles, the rota-
tion in cascade does have an effeet, which is approximated
by considering all closed f, curves (fo<0) as cireles in order
that the effect of all vortices in the region £< 0 may be
neglected during rotation.  The effect of all vortices in the
region f,>-0 s estimated by assuming that all the £, contours
for f,20 are straight lines uniformly spaced.  The flow
corresponds to that between two infinite straight parallel
vortex sheets of uniform strength per unit length.  This
flow induced by the vortices in the region £,0 is i the
r-direction, and the direction of the flow induced by the
vortices for which y,>y is opposite in sense to that induced
by the vortices for which y,<y.

As the point being considered is changed. the regions for

20, y,>y, and [2>-0, y,<y will include different sections
Jo 20 Yo ol . ! ]

of the blades, and henee different vortieity, with the result
that the r-veloeity component #, induced by the vortex
sheets will vary with the point under consideration. The
algebraic sum of the w-component of the uniform How
veloeity and the variable r-velocity ¢, induced by the vortices
in the region £,>>0 is to be used like the veloeity component
V7, in rotation of the isolated airfoil (equation (i7)). The
quantity 17, in equation (17) is replaced by the corresponding
V,,=V,42.. The vortex strength per unit length at any
point on the airfoil is equal to ¢’(s,) and, therefore, from
equation (10) the r~component of the veloeity induced by the

vortices is 55 ¢'(s,) ds,, where the integration is carried

out over the portion of the airfoil where fi(s,;s0)>0. A
distinetion must be made between the two regions y,<y and
yo=>y because the induced velocity components have oppo-
site directions.

The computed result of rotating an airfoil in caseade de-
pends upon the choice of (z,y.). In order to minimize the
error involved, values of dy/dB are reduced by choosing
(r.y.) s the centroid of the vortex distribution on the airfoil.
If the improvement in the mean-square deviation of ¢ is
=mall compared with its original value. it may be preferable
to omit the rotation of the airfoil beeause of the error inherent
in the approximation for dy /dB. The decision should he made
chiefly on how ¢ varies at the airfoil nose and whether it is
approaching a constant value in this region with successive
corrections of the shape.

Distortion of the shape.——The stream function computed
after the isolated airfoil has been rotated will, in general,
still vary along the boundary. This variation can be re-
duced by distorting the shape of the airfoil.  If the distor-
tion is small, the change in distance between any two points
on the boundary will be small, although the change in the
direction of a segment joining those points may be consider-
able.  The effeet of the distortion on the contribution to
the stream function of the vortices on the boundary is
consequently neglected.  The largest effeet of the distortion
will be to change the posttion of the boundary points in the
uniform stream. The airfoil is therefore distorted in such a
manner that the change in the coutribution of the uniform
stream to the stream function will eliminate the variations
in stream function. For points directly opposite each other
on the airfoil, the change in distance will be of the same order
of magnitude as the distortion. Consequently, distortions

that result in change of thickness of the airfoil converge
very slowly beeause of the imacceuraey of the fundamental
assumption on which the correction is based.

Thus, when the stream function along the boundary of
the isolated airfoil is known, some number is arbitrarily
chosen as the desired constant value of the stream funetion.
If Ay=y—¢ is the difference between the computed stream
function at a point and the desired constant, the point is
moved a distance —AY/17 perpendicular to the direction
of the mean stream, where the direetion of increasing uni-
form stream function is taken as positive. The airfoil in a
cascade is distorted in the same manner, by using the varying
resultant local mean stream veloeity ‘/"V,,H'— 17,%; corrections
are made with ¢ equal to the mean value of ¢ on the airfoil.

COMPUTATIONAL PROCEDURE FOR CASCADES
CHOICE OF VELOCITY DISTRIBUTION

Several factors influence the choice of the veloeity distri-
bution for which an airfoil is to be found. Especially in
rotors, sturdy blades are required. Long thin tail sections
must be avoided and where high rotative speeds and stresses
oceur, overhang of thin sections is likély to induce blade
failure.  The radial distribution of airfoil cross-sectional
area is also fundamental in determining the blade-root
stresses.  Overhang can be reduced by proper choice of the
velocity diagrams for the sections, but the other factors are
influenced chiefly by the thickness of the section.

The desired thickness may be attained by first assuming a
blade shape and spacing and by then using the stream-filament
method of reference 6 to compute the velocity distribution
over a portion of the airfoil that determines the thickness.
The spacing may be regarded as fixed but the curvature can
be adjusted if local velocities are too high for the desired
thickness. This computed veloeity will then serve as a
guide to the choice of an airfoil velocity distribution, which
should be chosen to avoid high velocity peaks and steep
negative gradients. If the average of the velocities on
opposite sides of the blade camber line is retained in the
modification of the velocity distribution computed from the
stream-filament method, the thickness will also be retained.

Because of the irrotationality of the fluid motion, the
velocity integral or circulation around the airfoil must be
cqual to that around a blade but over a width equal to one
blade space. Therefore,

J @’(N) (1-S=I‘=S(V;,|_7Vz.2)

where

T circulation about airfoil

17,1 tangential velocity entering cascade

7.2 tangential velocity leaving cascade

This relation places a condition on the assumed velocity
distribution.

If the computations thus far have been made in order to
select a velocity distribution for the airfoil caseade in 2 com-
pressible fluid flow, an equivalent velocity distribution for
the flow of an incompressible fluid must be determined
before the blade shape can be computed by any method
based on incompressible-flow theory.  For suberitical flows,
the directions of the inflow and discharge velocities are
nearly the same for compressible and incompressible flows,
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but for meompressible flow the component normal to caseade
axis is the same upstream and downstream.  The Kdrmidn-
Tsien compressibility correction (reference 7) or that of
Garrick and Kaplan (reference 8) may be applied to the
velocity on the blade surface to estimate roughly the corres-
ponding incompressible-flow velocity disteibution.  The re-
sulting velocity distribution in any case must satisfv the
circulation condition.  This procedure does not give an
exact solution for compressible flows, but the resultant com-
pressible flow will have approximately the desired char-
acteristies of low pressure gradients and no high velocity
poeaks.

COMPUTATION OF AIRFOIL SHAPE FROM THE CHOSEN VELOCITY
DISTRIBUTION

The numerical computation of the quantities involved in
the preceding analysis, particularly the function fi, is ex-
tremely laborious when tables of fi(s,s,) are used. Most of
the computations are therefore executed graphically.  In the
cascade example, the air was assumed to enter the cascade
at an angle of 45° from the cascade axis and to leave at an
angle of —30° from the cascade axis.  The preseribed veloe-
ity distribution is given in figure 3(a). The value of the lift
coeflicient for this airfoil is 3.1. The shapes of the isolated
airfoil and the airfoil in cascade are computed by the fol-
lowing steps:

P Suction surface
/ -
0 L 1 1, 1 1 L | J
.5 1.0 .5 20 25 30 35 40
S
-/ Pressure surface S
pra) fa)
vV
T
Ik
0 I al ] H ] L ] !
5 1.0 1.5 20 25 30 25 40
s
Lk ¥
(b

(a) Initial airfoil.
(h) Final airfoil.

Tigtne 3.—Preseribed veloeity distribution for thick airfoil in cascade.

1. Curves for constant f; for the isolated airfoil, or con-
stant f, (fig. 2) for the airfoil in cascade, are drawn. This
diagram should be made on some transparent material that
will change neither insize norshape.  The coordinates of the
curves for constant f; are given in table I, '

2. A desired velocity ¢ (s) is chosen as a function of the
arc length of the airfoil (fig. 3(a)). An airfoil shape having
the desired total are length is assumed and is drawn to the
same scale as the plot of f, or fo. The drawing is made on
grid paper and, in the case of a caseade, the z-axis coincides
with the cascade axis (fig. 4).

3. The velocity distribution ¢’(s) is integrated to obtain
the velocity potential ¢(s}. This funetion is plotted on the

same chart as the assumed airfoil shape for the correspe
y-coordinate. as shown in figure 4. hy plotting both

0 »

FroUrre 4.—Plot of airfoil and velocity potential for use in computation.

the y-coordinate of the airfoil against s on a supplemec
graph. In regions of the airfoil where ¥ varies little w
that is, where theairfoil boundary is parallel to the r-dire
o should be plotted against z in the same mauner, as ~
in figure 4.

4. In order to find the stream function at a point
on the airfoil, f, (s,s,) must be plotted as a funetion of
to evaluate the quantity Jfi(s,s.) de(s,) of equation
If the chart of f; is superimposed on the airfoil with on
tex center overlying the point (z,%), the value of £, m.
read at (r,y,) and the corresponding value of o(r,.,
also be read from the plot of ¢(x,,y,). The value of
is the same as would have been obtained by centerin
chart on (r,y,) because of the symmetry of the fun.
A succession of values of ¢ and f; are obtained in this fa
for various positions (r,.y,) that intersect the fi con:
and a plot of these points ( fi,¢) may be made for the ass
position (r.y). This procedure is illustrated in figure
a particular point (ry) on which the f; chart is cem
The readings for a particular (r,.y,) are shown by the arr
lines. The points | to 6 on the blade are shown o
corresponding f» curve. The discontinuity of ¢ bet
points | and 6 is the circulation.  The discontinuity bet
4 and 5 represents the region where f, approaches — «

5. The proper method of integration then procecds
1 through 6 to 7 and then to the origin, with const:
from 4 to 5. The region from 4 to 5 with f, approa
— @ is computed by equation (6) or (6b); the constan
assumed to be the radius of the near-cirele, which e
ponds to the value of 7 where the discontinuity from
H oceurs.

The total area including this small addition is

[ ot ds= [ fits,s0) de

which is the stream function due to vortices on the enti
of airfoils in cascade. Where f,=0 at the points .{, .
and D (fig. 53), the values of ¢ ave noted as o4(s), ga(s). ¢
and ¢p(s). These values are used in computing the str.
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function change caused by rotating the blade. The stream
function at the point (x, ¥) may now be computed from
equation (8) or (5), and

Y= — Ty:/-r':_ I’vr?/

It 4s

FIqURE 5.—Superposition of figures 2 and 4 to obtain plot of fs against .

A plot of the stream function (variation from the mean
value) is shown in figure 6 for the initially assumed shape.
Corresponding points on adjacent airfoils have a difference
of Ay/17,S equal to 1.0.

o Initial arfoill | |
+ First gpproxmotiont
o Severnth qooroximartion

av
P ol A
o o = o -
> ol T
y |

g 5 20 25 30 35 40 45
S
r

FIGURE 6.—Vauriation ln stream function along initial shape and first and seventh approxi-
mations of airfoil cascade.

6. When ¥(s) is known at a sufficient number of points,
the airfoil may be rotated as previously described. For the

isolated airfoil, equations (14) and (17) may be used directly. .

For the airfoil in cascade, the coordinates of the centroid of
the airfoil must first be computed by

Ic=%\ §I¢'(80) ds,

L y
ve=p Pusl(5) s,

io

3

1313—49

Before equation (17) can be used to compute dy/dB, the vari-
able quantity 1., must be computed. The vortices in the
region f,>>0 are considered to be uniformly distributed along
the cascade axis and the velocity induced by such a distri-
bution is

V=

o2

where v is the vortex strength per unit length along the cas-
cade axis for f,>>0. Therefore,

1,
DI=§SJ (4 (So) dso

where the integral is to be taken over the regions £, >>0. The
region f,>>0, 1, >y contributed a positive component to v,
whereas the region f,>>0, ,<{y contributes a negative com-
ponent. The computation is simply carried out by making
use of the fact that the integral for », is the difference between
values of ¢ at points where f;==0. The values of ¢4(s,),
©8(84), ¢c(s,), and ¢p(s,) from step 5 are used at this point
to obtain

20.8= f¢' (85) ds,= ps— o+ T~ (po—¢a) (18)

where T is introduced because of the discontinuity in ¢ at
the trailing edge. The sum ¢ps—¢p+T gives the effect of
the vorticity in the region f,(s, s,) >0 near the trailing edge,
and the term o.— 5 gives the effect of the vorticity in the
region f,(s,s,) >>0 near the leading edge. If either the leading
edge or the trailing edge lies in the region f;(s,s,)<0, only
two points of intersection will remain and one of the two
groups of terms in equation (18) will vanish. The quantity

5% f ¢’(s,) ds, is added to the z-component of the original

uniform stream velocity and the quantity dy/dB8 of equa-
tion (17) may be computed for a number of points and the
angle 8 computed from equation (14), using the values of (r.,y.)
just determined. After these computations have been made,
the airfoil is rotated through the angle 8, and the value

¢+ﬁ% is assigned as the value of the stream function of

the point after rotation,

7. A value of ¥(s) is known at points- along the airfoil
boundary. The mean value over the airfoil ¥ is subtracted
from ¢ leaving AY. For the isolated airfoil, no subtraction
is necessary. Each point is moved a distance——TA—‘P——w——

AR
in the direction perpendicular to the velocity computed in
step 6. The curve joining the points in their new positions
is the adjusted airfoil.

8. The total arc length of the adjusted airfoil will be
different from the original one, in general, although local
changes in length will be negligible. The airfoil is so scaled
that the length of the suction side is the same length as it was
before distortion because this surface is the critical surface
of the airfoil. This process will result in a change in length
of the pressure side. The velocity over the pressure side ¢’ (s)
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must then be altered in such & manner that the difference
in potential between the two stagnation points remains the
sume. As a result, the quantities that retain specified values
are the length and the velocity distribution on the suction
side and the circulation around the airfoil. The entire
procedure is repeated with the adjusted shape until the
variations in the stream function result in very little change
in the shape of the airfoil.

DISCUSSION OF EXAMPLES AND TECHNIQUES

For the example being computed, the stream funetions
obtained for the initially assumed shape and the first and
seventh approximations are plotted against the arc length
(fig. 6), which is taken as zero at the trailing edge and pro-
ceeds counterclockwise around the airfoil as shown in
figure 7. The fact that A¢ for the initial shape is positive
over the first half of the arc length and negative over the
second half indicates that it is too thick because the required
distortion in shape will make it thinner. The change in
thickness results in a change in velocity distribution over the
pressure side of the airfoil in order to maintain the desired
circulation. The velocity that was originally assumed,
which is equal to the vorticity per unit length distributed on

""" Initial airfoil
Final airfotl

FIGURE 7.—Initial shape and final approximation of thick airfoill showing cascade spacing.

the initial airfoil, is shown in figure 3 (a) and the velocity
over the final shape in figure 3 (b). The length of the
pressure side has increased and the velocity has decreased
in the portion of 1:1.1.

Over the section of the airfoil that has collapsed
thickness, the surface velocities of figure 3 (b) may nc
been obtained, but the loading (circulation per w
length), which is the difference in the veloeities on o)
sides, has been realized.  In practice, this collapse
vented by inereasing the assumed velocity on the
surface.

If the initially assumed airfoil shape has a thickne
differs considerably from the correct one, the process o
adjustment will converge rather slowly. The labor
reduced, however, by computing the stream funetio
few points on the airfoil and locating these points to
mine the thickness. This procedure is followed for tl
few approximations until the thickness of the airfoil i
accurate. The stream function is then computed
larger number of points, particularly near the leading
in order to get more detail of the shape.

Arbitrary specification of a velocity distributior
result, not in a physically real airfoil, but in a f
shape or a collapsed shape (zero thickness over a por
the blade). The velocity distribution must then be m
to obtain a real shape; these modifications should be s
to keep the desirable properties of the original distril
Velocity peaks and steep velocity gradients, which t.
occur on the suction side of an airfoil, are to be av
If the airfoil collapses, the vorticities of the two sides t
cancel each other and the remaining vorticity represe:
difference in velocity across the thin airfoil rather th.
velocity along the boundary.

The method was also applied to the design of a thin
(camber line) in a cascade. The vortex distribut
equivalent to load distribution (difference in velocity
the airfoil) rather than velocity as in the case of a
airfoil. The velocity diagram for the cascade and the «
load distribution for the thin airfoil are shown in fig
The value of the lift coefficient of the resultant airfoil

~ -
S v
< [> DA 74 |
- 45°
N EY |
N ] I
Q <
iy L1 |
R H
S |
I} i
S
N . ||
a 5 10 5
3
K}
FIGURE 8.—Velocity diagram for cascade and preseribed load distribution for thin
cascade.
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The initial shape was obtained by assuming zero spacing
between the airfoils. The initial shape and the first and
third approximations to the airfoil shape are shown in figure 9.

---------- Inrtial airforl )
——-—— First approximation
Third approximation

FIGURE 9.—Assumed shape and first and third approximations of thin airfoil showing cascade
spacing.

The second and third approximations differ very little.
The third approximation is redrawn in this diagram to show

The convergence of the method
The variation Ay of the

the spacing between airfoils.
is shown graphically in figure 10.

7 i o initiol airfoil | L o P
N + First opproximationt —t
q& o Second approximation !
Ay j O R R === vy g e
Vs Lol | I A e R
‘ LI Rt
""[/ ™~ Lot—T ' |
] L] 1 |
-/ L HI
0 5 .0 ]
5
£
FIGURE 10.—Variation in stream function for successive approximation of thin airfoil in
caseade,

stream function from its mean is divided by 'S to make it
dimensionless and is plotted against the arc length along the
airfoil where s=0 at the trailing edge. The stream function
computed on the second approximation is nearly constant,
which gives the third approximation almost the same shape
as the second one. The rapid adjustment of camber con-
trasts with the slow adjustment of thickness.

Frigur PropuLsioN REseArcH LLABORATORY,
NatioNaL Apvisory COMMITTEE FOR AERONAUTICS,
CLeveLaND, OHIio, March 4, 1947.




APPENDIX A
VELOCITY DISTRIBUTION ON THE DERIVED AIRFOIL AT DIFFERENT FLOW ANGLES

Conformal mapping.—When an airfoil is given, the ve-
locity distribution over its surface must frequently be found
at different angles of attack. This problem may be solved
by the method of conformal mapping, which consists in
mapping the region exterior to the airfoil on the exterior of
acircle. The velocity around the airfoil is obtained from the
known velocity around the circle. Procedures for finding
the function that maps a given airfoil into a circle are pre-
sented in references 1 and 9 for the isolated airfoil and refer-
ences 3 and 10 for the airfoil in cascade.

In general, the procedure for finding the mapping function
of an airfoil is a laborious one. But when, as in the present
case, the velocity distribution over the airfoil at a particular
angle of attack is known, the correspondence between points
on the airfoil and on the circle, and hence the flow velocity
at other angles of attack, can be obtained very easily.
Indeed, the correspondence of points and the velocities for
various angles of attack can be obtained by the method given
in reference 11 from the initial data without knowing the
airfoil shape, because the complex potentials of the airfoil
plane and the mapping-circle plane are equal. Before the
airfoil is designed it is therefore possible to check whether
the airfoil to be computed will be satisfactory under condi-
tions different from the design condition.

Isolated airfoil.—The flow about any airfoil shape can be
mapped on the flow about a unit circle in such a way that
corresponding points have the same potential. The flow
about the airfoil is given and the potential function ¢(s) at
each point is computed. If the potential function on the
airfoil is computed by integrating the velocity from the
stagnation point at the trailing edge in a counterclockwise
direction around the airfoil oriented as in figure 1, the poten-
tial will be zero at the trailing edge, deerease to a minimum
eomin 8t the stagnation point at the leading edge, and then
increase to a value equal to the circulation I' at the trailing
edge. The corresponding flow about the circle is determined
by the conditious that it must have the same values of g
and I' for a correspondence to exist between all airfoil and
circle points. If 6, is the central angle of the stagnation
point on the circle that corresponds to the trailing edge of
the airfoil,

Zr‘PT'Mﬂz—(cot 0r+07+/2) (AD)

Equation (A1) can be solved numerically for 8, because all
the other quantities are known. The velocity at infinity in
the ecircle plane V, can then be determined from the Kutta-
Joukowsky condition, which requires that 8, be a stagnation

point; that is,
,__ T
Ve= 4 sin 07 (A2)

10

The velocity potential at points on the cirele is
re. ..~ r
we=—2V, cos 0+.,~7|;-r—‘2i/c cos 0T—_,7~r 0r

The quantity 2V, cos §,— TI;_ 6ris a constant thatissubtr:

i order to make ¢, =0 at the stagnation point corres
ing to the trailing cdge.

The correspondence of points on the aicfoil with poin
the cirele is obtained by associating points where o(s
The velocity on the cirele at a uniform stream How angi

ve(8,a) =2V, [sin (§+-a) —sin (6r+a))

The nature of the conformal transformation is such tha
ratio of the velocity at a point on the airfoil to the vel
at the corresponding point on the circle is independe:
angle of attack. Therefore, the velocity ¢,’(s) on the »
at flow angle « is

ea' () _ o'(s)

ve(8,2) :(8,0)

where the design flow angle is taken as zero.  Equation
can be used to compute the velocity distribution on th
foil except at the two points that were stagnation poin
the design angle of attack.

Airfoils in cascade.—The flow about a cascade of ai
can be mapped conformally into the flow about a unit «
with two singular points located on the real axis symn
cally with respect to the center of the circle. These sin;
points correspond to the points at infinity in front of
behind the cascade, respectively. In a cascade of air
the distance of these points from the center of the cir
uniquely determined by the same conditions that deter
the flow about the circle in the isolated case; namely.
circulation per airfoil, the veloeity potential at the lea
edge, the blade spacing, and the upstream and downst:
flow angles.

The distance from the singular points to the center o
circle is denoted by e¥.  The flow about the circle is
that the location of the stagnation points 8, is determn
by the relation

_ T _sing,
2VS ™ sinh K °°

cos 6, .
L L
S A costhm)‘

where X\ is the angle of inclination of the mean stream t«
normal to the cascade axis. (See reference ¢ for det:
The quantities I', V, S, and X are known from the flo:
the cascade plane and therefore equation (A6) provid
relation between K and the location of the stagnation po:
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The veloeity potential at any point on the eivele is

S/ _, siné _, Ccos ) r _, tand
Yo o <>m M G TS tanh cosh ) Tog A0 tanh A
'S < _, sin 8y . oy Cos Or ) r _, tan ér -
[T s A tan cinh K008 A tanh™! cosh i +5 5 tan canh A (AT)

where 8y s the particular value of 0, corresponding to the trailing edge of the airfoil. The expression in brackets is a
constant so chosen that the potential will vanish at the stagnation point corvesponding to the trailing edge of the airfoil.  In
order to map the easeade on the eirele, K must be {found so that the value of ¢, . at 8y, the stagnation peint 6, corresponding
to the leading edge of the airfoil, is equal to @, the value of the veloeity potential there.  The identity

( s 6, > sinh? Iv{—( cos b coslﬁ K=l

sinh A cosh Ix

. - cos 8, . N .
is used to eliminate - 5= from equation (AG) to give
cosh K : :

cin 6 ——;)—‘I,S cosh? K sin N+ cos )\\/cosh"’ K—cos* k—(o VS') cosh® A sinh* K (A8)

sinh K- cosh? K—cost A

. . . . . . sin 8y cos Oy
In successive approximations, a value of K is assumed and equations (A8) and (AG) are used to find SR K cosh K

sin 87 cos Op
sinh &' and cosh K
another value of K is chosen, on the premise that ¢, . (8y) will decrease as K is decreased. When ¢, (fy) is evaluated,
care should be taken to use consistent values of the inverse tangents.  After two values of K and ¢, .(0y) are determined,
interpolation or extrapolation may be used for new values of K.

When K has been found, it is used in equation (A7) to evaluate ¢, . at values of 4 all around the circle. A point on
the cirele corresponds to the point on the airfoil where ¢(s)=¢.. The velocity at the point 8 on the circle is

_ Vs sinh 2K . cosf  cosfr) . sin § _ sin 0T>
Pee= 7 Cosh 2K cos 36 [““ A (eas'n“zc‘ GG%'[(“K)‘*’“‘“ A (gmirz‘c sl K (49)

and the velocity ¢./(s) on the airfoil at any other mean
flow angle N -a is

These values are inserted into equation (A7) to find .. at 9=8y. If ¢, .(6y) is not equal to gm,

_e'(s)

0o’ (8) =1 (0, N\ a) — TR

(A10)
as in the case of the isolated airfoil.

The designed airfoil was mapped on the unit circle by the
method described. The constant A, the natural logarithm
of the distance from the singular points to the center of the
unit cirele, is 0.075. The correspondence between points
on the airfoil and those on the circle is plotted in figure 11,
which shows the arc length of the airfoil as a function of the
central angle of the circle. The velocity at any point on the
airfoil for any angle of attack « may be obtained from
equations (A9) and (A10), the velocity distribution as in
ficure 3 (b), and the relation between s and 0 as in figure 1.

The ratio ‘p(((f)d is equal to d8/ds (vadians) and need be
¢, e\Yy

computed only once for any given airfoil.

. ) . ; " "
-200 -/150 -100 -50 o 50 100 /50 200
Central angle of circle, 8, degrees

Figurke 11.—Correspondence between points on airfoil and points on unit circle by conformal
transformation.




APPENDIX B
DERIVATION OF THE CASCADE EQUATION

An equation is to be developed for the complex velocity
at any point in the field of flow of a fluid past a row of equally
spaced, congruent bodies. Coordinates axes are chosen with
the origin inside one of the bodies and the z-axis in the
direction of the row. (See fig. 12.) The bodyv containing

Y
|
(N+35)8 ! (N+15)S
t
By BON—S'—-’B
t |
| A

R [
I

FIGURE 12.—Diagram for derivation of equation for flow about cascade.

the origin is denoted by B, bodies along the posit
rection of the s-axis by By, By, . . ., and along the m
direction of the r-axis by B_;, B_,, . . .. Acircle.lo
radius is drawn about the point z where the veloeit,
be determined. A rectangle R is drawn with its cer
the origin and its sides parallel to the axes of length (2.
and width 2¢, which contains the bodies B_y, . .

Bo, Bi. . . . By, and the circle A. If a side of the rec
intersects one of the bodies, the side may be distortec
around the body with no essential change in the

The function w’'(z,)/z,—z) is an analytical funetion «

the region inside the rectangle B but outside the bod
and the circle A.
Therefore
“w'(z,) w(~) X w (z,)
Wz g, — f 2 z,— ) gz =
JR 2,—2 %o A& 11-2—4\ B,20— %

The first integral can be broken up into four int.
one along each side of the rectangle, namely,

J‘Rw'(z,) doim f«\'ﬂms wlE,—it) f o [N 1/DS+ige] f( NS ! (2,4 if) +n) dot f—r w'[—(N+1/2)S+i:

2,—2 (NS To—it—2 (NF12)SF1y—
In an evaluation of these integrals, the function w’(z,) is
periodic, with period S, and approaches a constant value

infinitely- far from the cascade; that is,

W, o) =W, as Y,—
and
W (To+ 1Y) —w' as Yy—>— @

(NFUDS g (2, — i) NS, MNHDS qp (r,— i)
— dr,=w,’ — A

— (V1S Lo—it—2

The first of these integrals is

(NFUDS
wl’f = =’ log

—NH1yn8 Lo— i —2

as N—« and t— «, provided that t/(NS) — 0.

—(N+1/2)S+1y,—

N4UDS Tt it—z

From the last of these conditions, it follows that
w' (r,— it) =wy" (x,—1t) +wy’
where
wy' (x,—it)—0 as t— o
Therefore, the first integral on the right side of eq
(B2) is

J‘(\q—l/z)s wy’ (z,— it) dr, i J'<n+1/2)s71,3r(10_,,) iz,

(N41ps Lo—U—z Ty

: dx
—xvnsL—it—z T Jo(vpyms w,—it—z T
L —iw,’
[— (\+1/'>)S—,¢— B
The last integral in equation (B3) is
(n=12)§ Lo—U—
N *8/2 Wy (‘Ev_”)
=Y ,J— 512 Lot nS—it—z dz,
i) X [S? 2(,—it—2)wy (w,—1t) dx,

__J 2 Mﬂ_ﬂ dr,+32

Sz Ly — i

n=1 ~8/2 (_[o__['t__s)ﬁ_nZSZ




ISOLATED AND CASCADE AIRFOILS WITH PRESCRIBED VELOCITY DISTRIBUTION 13

1f ¢ is chosen sufficiently large so thatfwy’ (x,
are less than

2lr,—it—z] dz,

—if) I <e, where e is any preassigned positive number, the moduli of the integrals

de, N [ ; :| [ f dr & J 2V (@, = F t+y)? dx.,]
[:f si2 Lo t—2| +n>; _52 [(To— = 2)*—n*S?] s2 3 (To— 1) F (FFy)? Z —82 (Lo—a )V E (F+ ) —nS?

When N— o, this quantity approaches

J_\\ oot [S\ (Lo— )2 (T ) ] dz,

This integral is finite and, because € can be made arbitrarily
small as t— o, the last integral in equation (33) approaches

zero. Therefore,

(NHUDS ' (z,— 1t
f —(—i———) dr,—riw,’

(NFUD S To—1t—2

L' [—(N+1/2 )S—{-u/o]

t
as {—o and vg 0 In the same way and under the same

conditions,
—NFIDS Y (3, it)
dz—>Tiw,”
(1S Lot it—z
The second and fourth integrals on the right side of equa-
tion (B2) can be evaluated by combining them. Because
w’ is periodic,

w{(N+1/2)S+ iy ] =w'[— (N+1/2)S+ iy

and therefore,

J“ zL'[(\7+l/°)S4—zJu] +

L NFIR)SF - —(NF1)8F

1o—2

, J — 2N+ 128w (N +12)S+iy] o
idyo= | _, (iyo—2)°— (NF1/2)°87 1Yo

The velocity w'[(N+1/2)S+iy,] 1s bounded for all values of y,; that is, there is a constant W such that

fw' [(N+1/2)S+iy]| <W.

,
@Yo

OS(N+1/2) W f

__2S(N+12)W
VN 1S

t—y

As t—o and —\—{“S-—>O, this quantity approaches zero. It has

been shown, therefore, that when t—« and _\§L§—>O’

fR W) 2o + 1) (B4)

20—

-1 Y
: [“‘“ YNFIR)S =2

The absolute value of the integral is less than

dy,

== (VFIprsT ST W f G )T (V12— 7

—tan! e Y
RN S y e r']

By the residue theorem

N, w (20) w (90) -
u=Z—NfB. 2o 2 ([20 ==—\ [Ba 20+n‘5—" (140

[T

s £07 2 n=1,) Bo

as N— @,
When equations (B4), (B3), and (B6) are substituted into
equation (B1). the expression for the complex velocity is

obtained:

1 ’
—5 fmg—,w (2,) cot g (zo—2) dz, (BT)

(2 =% (wy” +wn’)

fAT;)a( :) dzo=27iw’ (2) (B5)
The periodicity of w’(z) implies that
WEETE dzm [, B cor § o2 e, (B6)

The complex potential is obtained from equation (B7) by
integrating with respect to z and neglecting the arbitrary
constant,

w(z):zw,,,'—l—% Lo w'(z,) log sin :’—Sr, (z—2,) dz, (BS8)

w +w,’

where w,,’= 5 is the mean stream velocity.




APPENDIX C
SYMBOLS

The prineipal symbols used throughout the report are
listed here for convenience of reference.

W,

’
wy

Le,Ye

<

n

(83

1
ir log [(-K—J',,)-Jr (!/—J/U)']

417; log [sin2 g, (z—ur,)-Fsinh? g (y—'yo‘):l

natural logarithm of distance from singular point to
center of cirele corresponiding to cascade airfoil

total arc length of airfoil

distance between successive airfoils in cascade

arc-length parameter corresponding to z

arc-length parameter corresponding to z,

magnitude of uniform or mean stream velocity in air-
foil or cascade plane (fig. 1)

magnitude of uniform stream velocity in cirele plane

z-component of uniform or mean stream velocity 17

resultant local mean stream z-component of velocity 17

y-component of uniform or mean stream veloeity 1”

local velocity on circle corresponding to isolated
airfoil '

local velocity on circle corresponding to airfoil in
cascade

veloeity induced by vortices in region £,>>0

complex potential function, g-+1y

complex velocity of mean stream for airfoil in cascade
[wm’=-;— (w1,+w2’>:Vz*in]

complex velocity of unifornrstream for isolated airfoil,
V=iV,

real part of z

coordinates of point about which airfoil is rotated
(centroid of vortex distribution for cascade airfoils)

imaginary part of z

coordinate of point where stream function is com-
puted, a4y

coordinate of point where vortex is located, », 4y,

angle of inclination of uniform stream velocity to
z-axis

angle through which airfoil is rotated

circulation about airfoil

vortex strength per unit ave length at z,

central angle of circle

angle of stagnation point on circle corresponding to
leading cdge of airfoil

angle of stagnation point on circle corresponding to
trailing edge of airfoil

14

A angle of inclination of mean tlow to normal to ca
axis (fig. 1)
@ velocity potential on airfoil. Rlw(z)]

e, o5, values of ¢ at points .1, B, C, D, respeetively, -
ec,op  curve of ofs,) interseets fa(s, 8,)=0 (See fig. -

@c velocity potential on eircle corresponding to isc
airfoil

¢e.c  velocity potential on cirele corresponding to air
cascade

emin  velocity potential at leading edge of airfoil

¥ stream function, I[w(z)]

Y stream function of mean stream of casecade flow

e stream function of uniform stream flowing
isolated airfoil

v mean value of stream function over airfoil

Ay variation of stream function, y—¢
Subseripts 1 and 2 when appended to »’, 17, and 17 inc
inflow and discharge values, respectively.
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ISOLATED AND CASCADE AIRFOILS WITH PRESCRIBED VELOCITY DISTRIBUTION

TABLE I, COORDINATES OF fu(x~xe y ~u.)
() Values of (y—y,)/S
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TABLE 1. COORDINATES OF fo(x—~zx,, y—y.)—Concluded
(b) Values of (x—=z,)/S
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APPENDIX C
SYMBOLS

The principal symbols used throughout the report are
listed here for convenience of reference.

7
W,

ZeYe

&2

[

1 e N
ir log [(I—J'..)'A)- (Z/—!/u)']

411; log [sin2 g (z—ux,) +sinh? Z (y—yg):]

natural logarithm of distance from singular point to
center of circle corresponding to cascade airfoil

total arc length of airfoil

distance between successive airfoils in cascade

arc-length parameter corresponding to z

arc-length parameter corresponding to z,

magnitude of uniform or mean stream velocity in air-
foil or cascade plane (fig. 1)

magnitude of uniform stream velocity in circle plane

z-component of uniform or mean stream velocity 17

resultant local mean stream z-component of velocity 17

y-component of uniform or mean stream velocity 17

local velocity on circle corresponding to isolated
airfoil '

local velocity on circle corresponding to airfoil in
cascade

veloeity induced by vortices in region £,>0

complex potential function, o+1y

complex velocity of mean stream for airfoil in cascade
[wa=5 ' +0i)=V.i7, |

complex veloeity of unifornrstream for isolated airfoil,
V=il

real part of z

coordinates of point about which airfoil is rotated
(centroid of vortex distribution for cascade airfoils)

imaginary part of z

coordinate of point where stream funetion is com-
puted, x4y

coordinate of point where vortex is located, &, iy,

angle of inclination of uniform stream velocity to
z-axis ’

angle through which airfoil is rotated

circulation about airfoil

vortex strength per unit arve length at z,

central angle of circle

angle of stagnation point on circle corresponding to

leading edge of airfoil
angle of stagnation point on circle corresponding to
trailing edge of airfoil
14

i)

v

v 3.

v

ol

-

A angle of inclination of mean flow to normal to ca
axis (fig. 1)

@ veloeity potential on airfoil, Rlw ()]

e, o5, values of ¢ at points A, B, C, D, respectively, -

(See fig. .

wc,ep curve of o(s,) interseets fa(s, 8, =0

@ veloeity potential on cirele corresponding to isc
airfoil

¢c.c  velocity potential on cirele corresponding to air:
cascade

emin  velocity potential at leading edge of airfoil

¥ stream function, I{w(z)]

Yn stream function of mean stream of eascade flow

Y stream function of uniform stream flowing

isolated airfoil
¥ mean value of stream function over airfoil

Ay variation of stream funetion, y—y¢
Subseripts 1 and 2 when appended to w’, 17, and 17, i
inflow and discharge values, respeetively.
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I[SOLATED AND CASCADE AIRFOILS WITH PRESCRIBED VELOCITY DISTRIBUTION

TABLE 1. COORDINATES OV fo(x -z, y -y,
(a} Values of (y—y.)/S
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Positive directions of axes and angles (forces and moments) are shown by arrows

Axis Moment about axis Angle Velocities
Force - -
: S;p”‘;”‘ugl ‘ , Linear
L Sym- | V0 8Xis ... 18ym-| Positive Designa- |Sym-| (compo-
Designation gglx symbol | Designation | " direction ion Bol | nent gl)ong Angular
- axis .
Longitudinal........| X X Rolling........ L Y—Z | Roll....... ¢ u P
Lateral . oo...... Y Y Pitching...... M Z—X Pitch........ ] v q
Normal..oooeeeeneee z Z Yawing ......] N. X—Y Yaw........| | ¥ w r
Absolute coefficients of moment " Angle of set of control surface (relative to neutral
y N position), §. (Indicate surface by proper subscript.)

L
0‘=qb—S Gm=q-c§ C.=§FS,
(rolling) (pitching) (yawing)

4. PROPELLER SYMBOLS

g g;iﬁiii{c pitch P Power, absolute coefficient Cr= ;77%)3
p/D  Pitch ratio %

V' Inflow velocity C, Speed-power coefficient= P

V. Slipstream velocity 9 Efficiency
T Thrust, absolute coefficient CT=;§ﬁ .o Revolutions per second, rps
Q P Effective helix angle:tan“(gﬁ)

Q Torque, absolute coefficient (Jq=;ﬂ—,T)3

5. NUMERICAL RELATIONS

1 hp=76.04 kg-m/s=>550 ft-Ib/sec - 1 1b=0.4536 kg
1 metric horsepower=0.9863 hp 1 kg=2.2046 Ib
1 mph=0.4470 mps 1 mi=1,609.35 m=5,280 fb

1 mps=2.2369 mph 1 m=3.2808 {t
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